Fundamental equations of Quantum Mechanics (WIP)
- Schrödinger representation
- Heisenberg representation
Schrödinger representation
In the Schrödinger picture, state vectors evolve in time but operators are constant.
Momentum operator
p^=−iℏ∇ (1)
Hamiltonian operator
H^=−2mℏ2∇2+V(r) (2)
Time-independent Schrödinger equation (TISE)
H^ψn(r)=Enψn(r) (3)
Time-dependent Schrödinger equation (TDSE)
H^Ψ(r,t)=iℏdtdΨ(r,t) (4)
General solution to the TDSE
Ψ(r,t)=n=1∑∞cnψn(r)e−iEnt/ℏ (5)
Probability of measuring eigenvalue $E_n$
∣cn∣2=∣⟨fn∣Ψ⟩∣2 (6)
Expectation value of an operator
⟨Q^⟩=⟨Ψ∣Q^∣Ψ⟩=∫Ψ∗Q^Ψdx=∑En∣cn∣2 (7)
Time dependence of expectation value
dtd⟨Q^⟩=ℏi⟨[H^,Q^]⟩+⟨∂t∂Q^⟩ (8)
Variance
σQ2=⟨(Q^−⟨Q^⟩)2⟩=⟨Q^2⟩−⟨Q^⟩2 (9)
Standard deviation
σQ=σQ2 (10)
General uncertainty principle
σAσB⩾∣2i1⟨[A^,B^]⟩∣ (11)
Heisenberg uncertainty principle
σxσp⩾2ℏ (12)
Energy-time uncertainty principle
ΔEΔt⩾2ℏ (13)
Heisenberg representation
In the Heisenberg picture, operators evolve in time but state vectors are constant.
Density operator
ρ^(t)=k∑pkρk(t) (14)
Trρ^=1
ρk(t)=∣ψk(t)⟩⟨ψk(t)∣ (15)
pk is probability of being in state ∣ψk(t)⟩ (16)
Ensemble average
⟨A^⟩(t)=Tr{ρ^(t)A^} (17)
Time-evolution of density operator
iℏdtdρ^(t)=[H^(t),ρ^(t)] (18)