Vector identities (WIP)

  1. Differential vector identities
  2. Integral vector identities

Differential vector identities

  1. (φψ)=φψ+ψφ\nabla(\varphi\psi)=\varphi\nabla\psi+\psi\nabla\varphi
  2. (ab)=(a)b+(b)a+a×(×b)+b×(×a)\nabla(\mathbf{a}\cdot\mathbf{b})=(\mathbf{a}\cdot\nabla)\mathbf{b}+(\mathbf{b}\cdot\nabla)\mathbf{a}+\mathbf{a}\times(\nabla\times\mathbf{b})+\mathbf{b}\times(\nabla\times\mathbf{a})
  3. (φa)=aφ+φa\nabla\cdot(\varphi\mathbf{a})=\mathbf{a}\cdot\nabla\varphi+\varphi\nabla\cdot\mathbf{a}
  4. (a×b)=b(×a)a(×b)\nabla\cdot(\mathbf{a}\times\mathbf{b})=\mathbf{b}\cdot(\nabla\times\mathbf{a})-\mathbf{a}\cdot(\nabla\times\mathbf{b})
  5. ×(φa)=φ×a+φ×a\nabla\times(\varphi\mathbf{a})=\nabla\varphi\times\mathbf{a}+\varphi\nabla\times\mathbf{a}
  6. ×(a×b)=a(b)b(a)+(b)a(a)b\nabla\times(\mathbf{a}\times\mathbf{b})=\mathbf{a}(\nabla\cdot\mathbf{b})-\mathbf{b}(\nabla\cdot\mathbf{a})+(\mathbf{b}\cdot\nabla)\mathbf{a}-(\mathbf{a}\cdot\nabla)\mathbf{b}
  7. ×φ=0\nabla\times\nabla\varphi=0
  8. (×a)=0\nabla\cdot(\nabla\times\mathbf{a})=0
  9. ×(×a)=(a)2a\nabla\times(\nabla\times\mathbf{a})=\nabla(\nabla\cdot\mathbf{a})-{\nabla^2}\mathbf{a}

Integral vector identities

  1. ab(φ)dl=φ(b)φ(a)\int_{\mathbf{a}}^{\mathbf{b}} (\nabla\varphi)\cdot d\mathbf{l} = \varphi(\mathbf{b})-\varphi(\mathbf{a}) (Gradient theorem)
  2. VAdv=SAda\int_V \nabla\cdot\mathbf{A}\,dv = \int_S\mathbf{A}\cdot d\mathbf{a}
  3. Vφdv=Sφda\int_V {\nabla \varphi } \,dv = \int_S {\varphi \,d{\mathbf{a}}}
  4. V×Adv=Sda×A\int_V {\nabla \times {\mathbf{A}}} \,dv = \int_S {d{\mathbf{a}} \times {\mathbf{A}}} (Divergence/Gauss' theorem)
  5. V(ψ2φφ2ψ)dv=S(ψφφψ)da\int_V (\psi\nabla^2\varphi-\varphi\nabla^2\psi)\,dv = \int_S(\psi\nabla\varphi-\varphi\nabla\psi)\cdot d\mathbf{a}
  6. V(ψ2φ+ψφ)dv=Sψφda\int_V (\psi\nabla^2\varphi+\nabla\psi\cdot\nabla\varphi)\,dv = \int_S\psi\nabla\varphi\cdot d\mathbf{a} (Green's theorem)
  7. S(×A)da=CAdl\int_S {(\nabla \times {\mathbf{A}}) \cdot d{\mathbf{a}}} = \oint_C {{\mathbf{A}} \cdot d{\mathbf{l}}}
  8. Sda×φ=Cφdl\int_S {d{\mathbf{a}} \times \nabla \varphi } = \oint_C {\varphi \,d{\mathbf{l}}}
  9. S(da×)×A=Cdl×A\int_S (d\mathbf{a}\times\nabla)\times\mathbf{A} = \oint_C d\mathbf{l}\times\mathbf{A} (Curl/Stokes' theorem)

See also:

Trigonometric identities