Vector identities (WIP)
- Differential vector identities
- Integral vector identities
Differential vector identities
- ∇(φψ)=φ∇ψ+ψ∇φ
- ∇(a⋅b)=(a⋅∇)b+(b⋅∇)a+a×(∇×b)+b×(∇×a)
- ∇⋅(φa)=a⋅∇φ+φ∇⋅a
- ∇⋅(a×b)=b⋅(∇×a)−a⋅(∇×b)
- ∇×(φa)=∇φ×a+φ∇×a
- ∇×(a×b)=a(∇⋅b)−b(∇⋅a)+(b⋅∇)a−(a⋅∇)b
- ∇×∇φ=0
- ∇⋅(∇×a)=0
- ∇×(∇×a)=∇(∇⋅a)−∇2a
Integral vector identities
- ∫ab(∇φ)⋅dl=φ(b)−φ(a) (Gradient theorem)
- ∫V∇⋅Adv=∫SA⋅da
- ∫V∇φdv=∫Sφda
- ∫V∇×Adv=∫Sda×A (Divergence/Gauss' theorem)
- ∫V(ψ∇2φ−φ∇2ψ)dv=∫S(ψ∇φ−φ∇ψ)⋅da
- ∫V(ψ∇2φ+∇ψ⋅∇φ)dv=∫Sψ∇φ⋅da (Green's theorem)
- ∫S(∇×A)⋅da=∮CA⋅dl
- ∫Sda×∇φ=∮Cφdl
- ∫S(da×∇)×A=∮Cdl×A (Curl/Stokes' theorem)
See also:
Trigonometric identities