Central force motion

  1. General central force motion
  2. Gravitational (inverse square) force
  3. Bound orbits
  4. Scattering

General central force motion

Slide 1 of 2
  • The central-force problem
Fig 1 — The central-force problem
Central force
F(r)=r^f(r)=r^dV(r)dr\mathbf{F}(\mathbf{r}) = \hat{\mathbf{r}}f(r) = -\hat{\mathbf{r}} \dfrac{dV(r)}{dr}
(1)
Lagrangian
L=12μ(r˙2+r2φ˙2)+V(r)L = \tfrac{1}{2} \mu (\dot{r}^2 + r^2\dot{\varphi}^2) + V(r)
(2)
Reduced mass
μm1m2m1+m2\mu \equiv \dfrac{m_1 m_2}{m_1 + m_2}
(3)
  • Equivalently, μ1=m11+m21\mu^{-1} = m_1^{-1} + m_2^{-1}.
  • The results on this page are for the equivalent one-body problem (as shown in Fig. 1) of the central force motion of two bodies m1m_1 and m2m_2 about their center of mass. Thus mm is replaced by μ\mu.
Orbital EoM
φ(r)=±l2μrdrr2(EVeff)+φ0\displaystyle\varphi(r) = \frac{\pm l}{\sqrt{2\mu}}\int^{r'}{\dfrac{dr}{r^2(E-V_{\text{eff}})}} + \varphi_0
star
(4)
Effective potential
Veff(r)=V(r)+l22μr2V_{\text{eff}}(r) = V(r) + \dfrac{l^2}{2 \mu r^2}
(5)
Angular momentum
l=r×p=μr2φ˙=constantl = |\mathbf{r} \times \mathbf{p}| = \mu r^2 \dot{\varphi} = \text{constant}
(6)
Energy
E=12μ(r˙2+r2φ˙2)+V(r)=constantE = \tfrac{1}{2} \mu (\dot{r}^2+r^2\dot{\varphi}^2) + V(r) = \text{constant}
(7)
Differential EoM
d2dθ2(1r)+1r=μr2l2F(r)\displaystyle\frac{d^2}{d\theta^2} \left(\frac{1}{r}\right) + \frac{1}{r}=-\frac{\mu r^2}{l^2}F(r)
(8)

Differential form of

Eq. (4)
.

Gravitational (inverse-square) force

Gravitational potential
V(r)=γμrV(r) = - \dfrac{\gamma \mu}{r}
(9)
γG(m1+m2)\gamma \equiv G(m_1 + m_2)
(10)
Solution of orbital EoM
1r=C(1εcosφ)\dfrac{1}{r} = C(1-\varepsilon \cos{\varphi})
star
(11)
  • Solution of
    Eq. (4)
    .
  • This is the equation of a conic section with one focus at the origin, where φ0=0\varphi_0=0 by convention.
  • Keep in mind that here EE and ll are the energy and angular momentum in the center-of-mass frame.
Cγμ2l2C \equiv \dfrac{\gamma \mu^2}{l^2}
(12)
Eccentricity
ε=(1+2El2μ3γ2)1/2\varepsilon = \left(1 + \dfrac{2El^2}{\mu^3 \gamma^2} \right)^{1/2}
(13)
EccentricityEnergyOrbit
ε>1\varepsilon>1E>0E>0Hyperbola
ε=1\varepsilon=1E=0E=0Parabola
0<ε<10<\varepsilon<1Vmin<E<0V_{\text{min}}<E<0Ellipse
ε=0\varepsilon=0E=VminE=V_{\text{min}}Circle

Bound orbits

Bound, elliptic orbits (E<0E < 0) in a gravitational potential.

Slide 1 of 1
  • Bound (elliptic) orbit
Fig 1 — Bound (elliptic) orbit
Semimajor axis
a=1C(1ε2)=μγ2E=d+d2a = \dfrac{1}{C(1-\varepsilon^2)} = -\dfrac{\mu \gamma}{2E} = \dfrac{d+d'}{2}
(14)
Semiminor axis
b=a1ε2=a2f2b = a \sqrt{1-\varepsilon^2} = \sqrt{a^2-f^2}
(15)
Focus
f=εaf = \varepsilon a
(16)

Kepler's laws

1st Law
r1=C(1εcosφ)r^{-1}=C(1-\varepsilon \cos{\varphi})
(17)

Planets move in elliptical orbits about the Sun with the Sun at one focus.

2nd Law
dAdt=l2μ=constant\dfrac{dA}{dt} = \dfrac{l}{2\mu} = \text{constant}
(18)

The area per unit time swept out by a radius vector from the Sun to a planet is constant.

3rd Law
τ2=4π2a3γ4π2a3GmSun\tau^2 = \dfrac{4 \pi^2 a^3}{\gamma} \cong \dfrac{4 \pi^2 a^3}{Gm_{\text{Sun}}}
(19)

The square of a planet's period is proportional to the cube of the major axis of the planet's orbit

Scattering

Unbounded, hyperbolic orbits (E>0E > 0) in a gravitational potential.

Slide 1 of 2
  • Scattering from an attractive central potential
Fig 1 — Scattering from an attractive central potential
Energy
E=12μv02E = \tfrac{1}{2} \mu v_0^2
(20)
  • Energy in the center-of-mass frame.
  • v0v_0 is the relative speed of particles approaching from infinity.
Angular momentum
l=μv0bl = \mu v_0 b
(21)
  • Angular momentum in the center-of-mass frame.
  • bb is called the impact parameter and is the distance of closest approach if the trajectory were undeflected.
Eccentricity
ε=[1+(v02bγ)2]1/2\varepsilon = \bigg[1 + \bigg(\dfrac{v_0^2 b}{\gamma}\bigg)^2 \bigg]^{1/2}
(22)
Distance of closest approach
rmin=b(ε1ε+1)1/2r_{\text{min}} = b \left( \dfrac{\varepsilon - 1}{\varepsilon + 1} \right)^{1/2}
(23)
Deflection angle
θ=2arctanγv02b\theta = 2 \arctan{\dfrac{\gamma}{v_0^2 b}}
(24)

General scattering orbits

Deflection angle
θ=π2φm\theta = |\pi - 2\varphi_m|
(25)
Angle to $r_{\text{min}}$
φm=l2μrmindrr2(EVeff)+π\displaystyle \varphi_m = \dfrac{l}{\sqrt{2\mu}}\int_{\infty}^{r_{\text{min}}}{\dfrac{dr}{r^2(E-V_{\text{eff}})}} + \pi
(26)
Distance of closest approach
EV(rmin)=l22μrmin2E-V(r_{\text{min}}) = \dfrac{l^2}{2 \mu r_{\text{min}}^2}
(27)

rminr_{\text{min}} is the root of the equation.

Cross section

Differential elastic scattering cross section
dσel=(dσdΩ)eldΩ=2πbdb(dσdΩ)el=bsinθdbdθd\sigma_{\text{el}}=\bigl(\tfrac{d\sigma}{d\Omega}\bigr)_{\text{el}}d\Omega=2\pi b\,db \Rightarrow \bigl(\tfrac{d\sigma}{d\Omega}\bigr)_{\text{el}}=\tfrac{b}{\sin{\theta}}\bigr|\tfrac{db}{d\theta}\bigl|
(28)
Solid angle
dΩ=dAR2=sinθdθdφd\Omega=\tfrac{dA}{R^2}=\sin\theta\,d\theta d\varphi
(29)
Total elastic scattering cross section
σT=dσel\sigma_T=\int d\sigma_{\text{el}}
(30)

Resources